Introduction 3
Getting Started 4
Addition \& Subtraction 5
We CAN Add \& Subtract
Number Bridges
Numbers on the Loose
Stand \& Be Counted
Numbers in Action
Counting 16
Counting under the Bridge
Bowling
Obstacle Course Counting
Estimation 25
A Perfect Fit
Jumpathon
How Long Will This Take?
Geometric Shapes 30
Exploring String Shapes
Shapes in Motion
Putting Your Foot Down
Matching 36
Finger Matching
Lily Pads \& Leaping Frogs
Find Your Match!
Measurement 44
Kangaroo \& Frog Jumperoo
Measuring in Steps, Jumps, \& Gallops
Number Recognition \& Formation 49
Keep the Ball Rolling
Skywriting
Number Walk
Follow the Leader Numerals
Number Sense 55
Who's First?Ordering OurselvesAll Aboard!
Numbers on Call
Patterning 63
What's Next?Puppies Go In \& OutPass a Pattern
Skip-Counting 67
Number Trains
Jump-CountingJack-in-the-Box Skip-Counting
Sorting \& Classifying 72
Sort \& ChasePick up SocksBig Circle Sort
Time \& Money 78
How Many Times?
Walking the ClockPiggy Bank, Piggy Bank
Word Problems. 86
Acting out Counting PoemsActing out Story Problems
Math Skills Inventory 94
Music \& Literature Links 95
Gross Motor Skills Index 96

introduction

Why not give young children the chance to move, use their bodies, and play physical games-all while learning primary math concepts? It's a perfect combination for young children whose natural tendency is to move around. The activities in Math in Motion have a magical effect on children because they combine the physical with the cognitive. Children participate enthusiastically and take more ownership of their learning because their own bodies are involved.

On the cognitive level, Math in Motion activities encourage children to explore sorting, comparing, counting, skip-counting, estimating, measuring, and much more. Children expand their math vocabulary as they talk about how many are left and how many all together, as well as identify shapes, patterns, and attributes. On the physical level, children run, jump, gallop, leap, wiggle, hop, tiptoe, and throw, as they practice a variety of gross motor skills and gain a sense of their own personal space. Because children practice physical skills at their own developmental level, they increase their confidence in their bodies and their math skills.

With activities for small- and whole-group instruction, Math in Motion provides a variety of opportunities to assess and observe individuals because the lessons are designed to allow for individual differences. Children's actions, expressions, and responses will tell you worlds about their developmental levels, both physically and cognitively.

Each fun "math-and-movement" activity requires everyday materials and is quick and simple to set up. Detailed instructions and a variety of reproducibles keep teacher preparation time to a minimum. Use the math skills inventory and the gross motor skills index to decide which activities focus on the developmental needs of your students. Use the variation ideas to adapt each activity to best meet the unique needs and skills of your class. Incorporate the recommended music and literature links to extend the learning and fun. Just think how exciting math can be when it's connected to movement!

\bullet Activities that require number-card and dot-card necklaces suggest which cards to use. However, use the cards that are most appropriate for the needs of your class. For example, a first-grade teacher may choose to use cards with numbers that are higher than the ones an activity suggests.

Assessment \& Observation

The first page of each main section features a list of questions to ask yourself when children are doing the math-and-movement activities. These questions address the main mathematical goals of the activities in that section. Use the Math Skills Inventory (page 94) to chart each child's progress. Carry the inventory on a clipboard. Mark a plus for mastery, a check for satisfactory progress, and a minus for lack of progress. Use this inventory to see at a glance which skills each child needs to develop.

Music \& Literature Links

Because music lends itself to movement, this book includes a list of songs in addition to recommended books (page 95). Some of the music suggestions are popular children's songs that have been recorded by many different artists. Use the recommended books to integrate math and literature.

Gross Motor Skills Index

Each activity involves at least one type of gross motor skill. Use the index on page 96 to quickly find which activities allow children to develop their hand-eye coordination or their locomotor, nonlocomotor, or balance skills.

Set up the activity area by drawing a starting line with chalk. Set an empty container $4^{\prime}-5$ ' ($1.2 \mathrm{~m}-1.5 \mathrm{~m}$) from the starting line. Divide the class into groups of three to five. Work with one group at a time, or set up an activity area for each group.

MATH CONCEPTS

addition, number conservation

1 Have one group line up behind the starting line. Give each child a beanbag. Have children count how many beanbags their group has all together.

2 Tell children to take turns tossing their beanbag into the container.
3 Have the whole group assess what happened to the beanbags. Ask How many beanbags landed outside the container? and How many beanbags landed inside the container? Have children explain how they arrived at their answers.

4 Encourage children to say a number sentence that describes the outcome of their group's tosses (e.g., 2 beanbags were inside the container, 1 was outside, so $2+1=3$).

5 For subtraction practice, invite children to tell how many beanbags are left in the container. For example, if a group tosses five beanbags and three beanbags land outside the container, prompt children to explain that there must be two beanbags left in the container. Encourage children to say a subtraction sentence to describe this (e.g., $5-3=2$).

- Give each child more than one beanbag to make the activity more challenging.
- Have children write down all possible equations for a sum (e.g., $3+1=4$, $1+3=4$, and $2+2=4$).

